Chem. Ber. 105, 88-94 (1972)

Siegfried Warwel, Heinz-Peter Hemmerich und Friedrich Asinger

Photochemische Reaktionen mit metallorganischen Verbindungen, II¹⁾

cis-trans-Isomerisierung der n-Octene mit γ -Strahlen in Gegenwart aluminiumorganischer Verbindungen

Aus dem Institut für Technische Chemie und Petrolchemie der Rheinisch-Westfälischen Technischen Hochschule Aachen

(Eingegangen am 24. September 1971)

Die linearen Octene mit innenstehender Doppelbindung unterliegen bei Bestrahlung mit γ -Strahlen eines ⁶⁰Co-Präparats schon bei Raumtemperatur immer dann einer *cis-trans*-Isomerisierung, wenn molare Mengen einer aluminiumorganischen Verbindung (HAIR₂ oder AIR₃) anwesend sind. Diese Konfigurationsisomerisierung, die unter sonst gleichen Bedingungen ohne Bestrahlung oder bei Abwesenheit der aluminiumorganischen Verbindung im Olefinmolekül und führt unabhängig von der Konfiguration des eingesetzten Olefins bei allen n-Octenen jeweils zum thermodynamischen Gleichgewichtsgemisch der *cis-trans*-Isomeren. Die *cis-trans*-Isomerisierung wird behindert, wenn die aluminiumorganische Verbindung durch Elektronendonoren komplexiert ist. Die Reaktionshemmung ist dabei je nach eingesetztem Komplexbildner unterschiedlich. Triäthylamin, Tetrahydrofuran und Di-n-butylsulfid verhindern die *cis-trans*-Isomerisierung praktisch vollständig.

Photochemical Reactions with Organometallic Compounds, II¹⁾

cis-trans-Isomerization of n-Octenes with y-Rays in the Presence of Organoaluminum Compounds

Linear octenes with internal double bonds are readily subject to *cis-trans*-isomerization on exposure to γ -rays of a 60 Co-source at room temperature if molar amounts of an organoaluminum compound (HAIR₂ or AIR₃) are present. This *cis-trans*-isomerization, which under otherwise identical reaction conditions is not observed without γ -radiation or in the absence of the organometallic compound, proceeds without any shift of the C=C-double bond in the olefin molecule and irrespective of the configuration of the octene used leads in all cases to the thermodynamically stable equilibrium mixture of the isomers. *cis-trans*-Isomerization is distinctly hindered if the organometal compound is complexed by electron donors. The degree of the inhibition depends upon the complexing component used. Triethylamine, tetrahydrofuran and di-n-butylsulfide prevent the isomerization almost completely.

Die reine *cis-trans*-Isomerisierung eines Olefins²⁾ ist vorzugsweise durch einen reversiblen Radikalangriff auf die olefinische Doppelbindung oder auf photochemi-

¹⁾ I. Mitteil.: S. Warwel und H.-P. Hemmerich, Tetrahedron Letters [London] 1970, 3185.

²⁾ F. Asinger und B. Fell, Erdöl u. Kohle-Erdgas-Petrochem. 19, 500 (1966).

schem Wege (UV-Licht, γ -Strahlen³⁻⁵⁾) möglich. Da Doppelbindungen in Monoolefinen Energie jedoch erst im Vakuum-Ultraviolett (unter 200 nm) absorbieren, ist bei der photochemischen Arbeitsweise in der Regel die Anwesenheit von Sensibilisatoren, z.B. aromatischen Carbonylverbindungen^{6,7)}, notwendig. Die Konfigurationsisomerisierung erfolgt dann über einen Triplett-Triplett-Energieaustausch des angeregten Sensibilisators mit dem Olefin⁶⁾.

Im Zusammenhang mit unseren Arbeiten über die durch Übergangsmetallsalze katalysierte Hydroaluminierung ungesättigter Verbindungen⁸⁻¹²⁾ stellten wir nun fest, daß zur Erzielung einer *cis-trans*-Isomerisierung an die Stelle der erwähnten Photosensibilisatoren auch aluminiumorganische Verbindungen treten können. Während nämlich nach Einwirkung von γ -Strahlen eines ⁶⁰Co-Präparates bei Raumtemperatur reines *cis-* oder *trans*-n-Octen-(4) unverändert zurückgewonnen werden konnte, wurde bei Bestrahlung der jeweiligen Olefine in Gegenwart molarer Mengen Diisobutylaluminiumhydrid eine *cis-trans*-Isomerisierung der olefinischen Doppelbindung beobachtet^{1,13)}. Diese Isomerisierung verlief ohne die geringste Verschiebung der C=C-Doppelbindung im Olefinmolekül und führte praktisch zum thermodynamisch stabilen Gleichgewichtsgemisch der Konfigurationsisomeren.

Die Abbild. zeigt den zeitlichen Verlauf der Konfigurationsisomerisierung von *cis*- und *trans*-n-Octen-(4) in Gegenwart eines 4fach molaren Überschusses von HAl(i-C₄H₉)₂; in Tab. 1 sind die jeweiligen *cis/trans*-Verhältnisse, die ermittelten *G*-Werte, die Strahlendosis sowie das Ausmaß der während der Isomerisierung auftretenden Addition des Dialkylalans an die olefinische Doppelbindung zusammengestellt.

Das thermodynamisch stabile Gleichgewichtsgemisch der konfigurationsisomeren n-Octene-(4), das sich bei 22° aus 16.2% der *cis*- und 83.8% der *trans*-Form zusammensetzt¹⁴⁾, wurde, ausgehend von *trans*-n-Octen-(4), mit einem ermittelten *cis/trans*-Verhältnis von 16.4: 83.6 bereits nach 15 Stdn. (vgl. Vers. 13) und, ausgehend von *cis*-n-Octen-(4), mit 16.4: 83.6 nach 37 Stdn. (vgl. Vers. 7) erreicht. Eine Verschiebung der Doppelbindung unter Bildung der n-Octene-(3) wurde nicht beobachtet. Auch die Addition des Dialkylaluminiumhydrids an die olefinische Doppelbindung, die sich durch das Auftreten von n-Octan nach Hydrolyse der Reaktionsmischung

- 3) R. B. Cundall und P. A. Griffiths, Discuss. Faraday Soc. 36, 111 (1963).
- ⁴⁾ R. B. Cundall und P. A. Griffiths, J. Amer. chem. Soc. 85, 1211 (1963).
- ⁵⁾ R. R. Hentz, D. B. Peterson, S. B. Srivastava, H. F. Barzynski und M. Burton, J. physic. Chem. 70, 2362 (1966).
- 6) G. S. Hammond, J. Saltiel, A. A. Lamola, N. J. Turro, J. S. Bradshaw, D. O. Cowan, R. C. Counsell, V. Vogt und C. Dalton, J. Amer. chem. Soc. 86, 3197 (1964).
- ⁷⁾ G. S. Hammond, P. A. Leermakers und N. J. Turro, J. Amer. chem. Soc. 83, 2396 (1961) und J. physic. Chem. 66, 1144 (1962).
- ⁸⁾ F. Asinger, B. Fell und R. Janssen, Chem. Ber. 97, 2515 (1964).
- 9) F. Asinger, B. Fell und F. Theisssen, Chem. Ber. 100, 937 (1967).
- ¹⁰⁾ F. Asinger, B. Fell, R. Janssen und S. Warwel, Jahrbuch 1967 des Landesamtes für Forschung des Landes Nordrhein-Westfalen, S. 37f., Westdeutscher Verlag, Köln und Opladen 1967.
- 11) B. Fell, S. Warwel und F. Asinger, Chem. Ber. 103, 855 (1970).
- 12) F. Asinger, B. Fell und R. Osberghaus, Chem. Ber. 104, 1332 (1971).
- ¹³⁾ Vgl. auch: S. Warwel, H.-P. Hemmerich und F. Asinger, Angew. Chem. **83**, 296 (1971); Angew. Chem. internat. Edit. **10**, 280 (1971).
- 14) H.-D. Hahn, Dissertat., Techn. Hochschule Aachen 1967.

Abbild. Zeitlicher Verlauf der cis-trans-Isomerisierung der n-Octene-(4) mit γ-Strahlen in Gegenwart von 4 Moläquivv. HAl(i-C₄H₉)₂ bei 22°

Vers. Nr.	Eingesetztes Olefin	Reakt zeit [Stdn.]	Strahlen- dosis [106 rad]	G-Wert ^{b)} cis→trans bzw. trans→cis	Addi- tion ^{c)} [%]	Molverhältnis cis-4 : trans-4
1	cis-n-Octen-(4)	1	0.1	3469	0.6	94.7 : 5.3
2	cis-n-Octen-(4)	5	0.6	3006	0.6	79.0:21.0
3	cis-n-Octen-(4)	10	1.2	2976	0.7	58.9:41.1
4	cis-n-Octen-(4)	15	1.8	2852	0.9	41.0:59.0
5	cis-n-Octen-(4)	25	2.9	2350	0.8	19.5:80.5
6	cis-n-Octen-(4)	30	3.5	2002	1.1	17.4:82.6
7	cis-n-Octen-(4)	37	4.3	1644	1.0	16.4:83.6
8	cis-n-Octen-(4)	45	5.3	1336	1.8	16.3:83.7
9	trans-n-Octen-(4)	1	0.1	2410	0.4	3.3 : 9 6.7
10	trans-n-Octen-(4)	3	0.4	2069	0.2	8.5:91.5
11	trans-n-Octen-(4)	5	0.6	1884	0.4	13.0:87.0
12	trans-n-Octen-(4)	10	1.2	1110	0.7	15.3:84.7
13	trans-n-Octen-(4)	15	1.8	794	0.6	16.4 : 83.6
14	trans-n-Octen-(4)	22	2.6	541	1.0	16.5:83.5
15	trans-n-Octen-(4)	37	4.3	298	0.7	15.6 : 84.4

Tab. 1. cis-trans-Isomerisierung der n-Octene-(4) mit γ -Strahlen in Gegenwart von HAl(i-C₄H₉)₂^{a)} – Abhängigkeit von der Bestrahlungsdauer

a) Konstante Reaktionsbedingungen: 17.4 mMol (1.95 g) cis- bzw. trans-n-Octen-(4) und 69.6 mMol (9.9 g) HAl(i-C₄H₉)₂ (Molverhältnis Olefin: HAIR₂ = 1: 4) wurden nach Durchmischung unter Argonatmosphäre bei 22° γ-bestrahlt (ca. 2400 Curie starkes 60Co-Präparat). Anschließend wurde die Mischung hydrolysiert und gaschromatographisch analysiert.
 b) Der starke Abfall der G-Werte bei den Vers. 5-8 und 12--15 ergibt sich durch die mit der Gleichgewichts-

b) Der starke Abfall der G-Werte bei den Vers. 5-8 und 12-15 ergibt sich durch die mit der Gleichgewichtseinstellung zunehmende Rückreaktion (trans-cis bei Vers. 5-8 und cis-trans bei Vers. 12-15).

c) Bez. auf das eingesetzte Olefin.

bemerkbar macht, war unter den angewendeten Bedingungen gering; erst nach 30stdg. Bestrahlung von *cis*-n-Octen-(4) betrug sie mehr als 1%, bez. auf das eingesetzte Olefin (vgl. Vers. 6).

Wir prüften nun, ob das Vorhandensein einer Aluminium-Wasserstoff-Bindung – wie sie ja im Diisobutylaluminiumhydrid vorliegt – eine notwendige Voraussetzung für die *cis-trans*-Isomerisierung darstellt, und bestrahlten daher *cis*- bzw. *trans*-n-Octen-(4) mit γ -Strahlen bei Raumtemperatur in Gegenwart verschiedener Aluminiumtrialkyle (vgl. Tab. 2). Auch hier wurden Olefin und aluminiumorganische Verbindung wieder im Molverhältnis 1:4 eingesetzt, das sich schon bei Verwendung von HAl(i-C₄H₉)₂ als optimal erwiesen hatte (vgl. Tab. 1, Vers. 7, mit Tab. 4, Vers. 30).

Vers. Nr.	Al-Verbindung	Eingesetztes Olefin	Addition [%]	Molverhältnis cis-4 : trans-4
16	Al(i-C4H9)3	cis-Octen-(4)	0.1	18.0 : 82.0
17	Al(i-C ₄ H ₉) ₃	trans-Octen-(4)	< 0.1	17.2:82.8
18	$Al(n-C_4H_9)_3$	cis-Octen-(4)	1.0	17.8:82.2
19	$Al(n-C_4H_9)_3$	trans-Octen-(4)	1.0	18.1:81.9
20	$Al(n-C_8H_{17})_3$	cis-Octen-(4)	n. b.	77.6:22.4
21	$Al(n-C_8H_{17})_3$	trans-Octen-(4)	n. b.	12.0:88.0

Tab. 2. cis-trans-Isomerisierung der n-Octene-(4) mit γ-Strahlen in Gegenwart verschiedener Aluminiumalkyle^{a)}

a) Konstante Reaktionsbedingungen: cis- bzw. trans-n-Octen-(4) und AIR₃ (Molverhältnis Olefin : AIR₃ = 1 : 4) wurden nach Durchmischung unter Argonatmosphäre 37 Stdn. bei 22° γ-bestrahlt. Strahlendosis: 4.3 · 10⁶ rad. Anschließend wurde die Mischung hydrolysiert und gaschromatographisch analysiert.

Unabhängig von der Konfiguration des eingesetzten Olefins trat in Gegenwart aller untersuchten aluminiumorganischen Verbindungen eine reine *cis-trans*-Isomerisierung ein, die mit HAl(i-C₄H₉)₂, Al(i-C₄H₉)₃ sowie Al(n-C₄H₉)₃ praktisch zum thermodynamisch stabilen Gleichgewichtsgemisch der Konfigurationsisomeren führte. Aluminium-tri-n-octyl erwies sich dagegen als bedeutend weniger wirksam. Bei Wiederholung der Versuche 7, 15 sowie 16–21 ohne Einwirkung von γ -Strahlen wurde das jeweilige Olefin unverändert zurückerhalten.

Die *cis-trans*-Isomerisierung mit γ -Strahlen in Gegenwart aluminiumorganischer Verbindungen ist — wie Tab. 3 zeigt — nicht auf das symmetrische n-Octen-(4) beschränkt.

Tab. 3. cis-trans-Isomerisierung der n-Octene-(3) und -(2) mit γ-Strahlen in Gegenwart von HAl(i-C₄H₉)₂ bzw. Al(i-C₄H₉)₃^{a)}

Vers. Nr.	Al-Verbindung	Eingesetztes Olefin	Addition b) [%]	Molverhältnis cis: trans
22	HAl(i-C4H9)2	cis-Octen-(3)	1.5	15.3 : 84.7
23	HAI(i-C4H9)2	trans-Octen-(3)	1.5	13.1:86.9
24	HAI(i-C4H9)	cis-Octen-(2)	1.9	22.1:77.9
25	HAl(i-C ₄ H ₉) ₂	trans-Octen-(2)	2.3	22.2:77.8
26	Al(i-C4H0)1	cis-Octen-(3)	0.4	15.6:84.4
27	Al(i-C4H9)	trans-Octen-(3)	0.2	14.8:85.2
28	Al(i-C4H0)	cis-Octen-(2)	0.0	24.7:75.3
29	Al(i-C ₄ H ₉) ₃	trans-Octen-(2)	< 0.1	25.0: 75.0

a) Konstante Reaktionsbedingungen wie in Tab. 2.

b) Bez. auf das eingesetzte Olefin.

Auch in diesen Fällen (vgl. Tab. 3) wurde das jeweilige thermodynamisch stabile *cis/trans*-Verhältnis, das bei 22° für die n-Octene-(3) 15.6 : 84.4 und für die n-Octene-(2) 21.8 : 78.2 beträgt ¹⁴), erreicht.

Um die Funktion der aluminiumorganischen Verbindung bei dieser Isomerisierungsreaktion näher zu studieren, führten wir nun Versuche in Gegenwart von Aluminiumalkylen durch, die mit Elektronendonoren komplexiert waren. Dabei wurde zunächst aus Donor und Aluminiumalkyl der 1:1-Komplex (Ausnahme: AlR₃: Dioxan = 1:0.5) hergestellt und dieser dann zusammen mit der äquimolaren Menge *cis*- bzw. *trans*-n-Octen-(4) bei Raumtemperatur bestrahlt (vgl. Tab. 4).

Vers. Nr.	Komplex- bildner	Al-Verbindung	Eingesetztes n-Octen-(4)	Addition	Molverhältnis cis : trans
30	ohne	HAl(i-C4H9)2	cis-	0.6	45.2 : 54.8
31	C₄H₀OC₄H₀	HAI(i-C4H9)2	cis-	0.3	53.3:46.7
32 ъ)	Dioxan	HAI(i-C4H9)2	cis-	0.6	58.0:42.0
33	C ₂ H ₅ OC ₂ H ₅	HAl(i-C4H9)2	cis-	0.5	69.4:30.6
34	THF	HAl(i-C ₄ H ₉) ₂	cis-	0.3	96.0: 4.0
35	$N(C_2H_5)_3$	HAl(i-C4H9)2	cis-	0.3	97.4: 2.6
36	C₄H9SC₄H9	HAl(i-C4H9)2	cis-	0.7	97.8: 2.2
37	ohne	HAl(i-C4H9)2	trans-	0.7	15.6:84.4
38	C4H9OC4H9	HAl(i-C4H9)2	trans-	0.5	12.5:87.5
39 ь)	Dioxan	HAl(i-C4H9)2	trans-	0.6	12.8:87.2
40	C ₂ H ₅ OC ₂ H ₅	HAl(i-C4H9)2	trans-	0.5	10.8:89.2
41	THF	HAI(i-C4H9)2	trans-	0.6	0.9 : 99.1
42	$N(C_2H_5)_3$	HAl(i-C4H9)2	trans-	0.3	0.9:99.1
43	C4H9SC4H9	HAl(i-C ₄ H ₉) ₂	trans-	0.4	0.2:99.8
44	ohne	Al(i-C4H9)3	cis-	0	54.6:45.4
45	C₄H₀OC₄H₀	Al(i-C4H9)3	cis-	0	98.8: 1.2
46	$N(C_2H_5)_3$	Al(i-C4H9)3	cis-	0.1	99.0: 1.0
47	C₄H9SC₄H9	Al(i-C4H9)3	cis-	0.2	94.6: 5.4
48	ohne	Al(i-C ₄ H ₉) ₃	trans-	0	16.3:83.7
49	C₄H₀OC₄H₀	Al(i-C4H9)3	trans-	0.1	0.2:99.8
50	$N(C_2H_5)_3$	Al(i-C4H9)3	trans-	<0.1	0.4 : 99.6
51	C4H9SC4H9	Al(i-C4H9)3	trans-	0.1	0.5:99.5

Tab. 4. cis-trans-Isomerisierung der n-Octene-(4) mit γ-Strahlen in Gegenwart von komplexiertem HAl(i-C₄H₉)₂ bzw. Al(i-C₄H₉)₃^{a)}

a) Konstante Reaktionsbedingungen: Der Komplex aus Aluminiumalkyl und Elektronendonor wurde vor Versuchsbeginn durch Mischen der Komponenten im Molverhältnis 1:1 hergestellt und dann zusammen mit der äquimolaren Menge Olefin 37 Stdn. bei 22° bestrahlt. Strahlendosis: 4.3 · 10° rad. Anschließend wurde die Mischung hydrolysiert und gaschromatographisch analysiert.

b) Molverhältnis Al-Verbindung: Dioxan = 1:0.5.

Wie Tab. 4 zeigt, wurde die *cis-trans*-Isomerisierung in Gegenwart von komplexierten Aluminiumalkylen erheblich behindert, z. T. sogar vollständig unterbunden.

Während bei Verwendung von Al(i-C₄H₉)₃ als aluminiumorganische Spezies alle eingesetzten Komplexbildner die *cis-trans*-Isomerisierung zum Erliegen brachten (vgl. Vers. 44-51), traten bei Einsatz von HAl(i-C₄H₉)₂ je nach Elektronendonor deutliche Unterschiede auf. Hier waren Dibutyläther (Vers. 31 und 38), Dioxan (Vers. 32 und 39) und Diäthyläther (Vers. 33 und 40) vergleichsweise weniger wirksam als z. B. Tetrahydrofuran (Vers. 34 und 41) oder Triäthylamin (Vers. 35 und 42). Diese Reihenfolge der Donoren entspricht damit ihren ansteigenden Komplexbildungsenthalpien gegenüber Aluminiumalkylen^{15, 16)}. Auch die unterschiedlichen Ergebnisse, die mit Dibutyläther als Komplexbildner und HAl(i-C₄H₉)₂ einerseits (Vers. 31 und 38) und Al(i-C₄H₉)₃ andererseits (Vers. 45 und 49) erzielt wurden, machen deutlich, daß die Konfigurationsisomerisierung nur mit der "freien" aluminiumorganischen Verbindung abläuft; während nämlich Aluminiumtrialkyle definierte Komplexverbindungen bilden, addieren Dialkylaluminiumhydride Äther reversibel¹⁷⁾,

> 3 HAI(i-C₄H₉)₂ $\xrightarrow{}$ [HAI(i-C₄H₉)₂]₃ + 3 C₄H₉OC₄H₉ $\uparrow O(C_4H_9)_2$

so daß also stets eine gewisse Menge der nicht komplexierten aluminiumorganischen Verbindung vorliegt, die dann die *cis-trans*-Isomerisierung möglich macht.

Die Versuche mit komplexierten aluminiumorganischen Verbindungen unterstreichen die spezifische Rolle der Aluminiumalkyle bei der Konfigurationsisomerisierung von Olefinen. Sie könnten geeignet sein, zur Aufklärung des Reaktionsmechanismus, über den wir z.Z. noch keine konkreten Aussagen machen können, beizutragen.

Dem Landesant für Forschung beim Ministerpräsidenten des Landes Nordrhein-Westfalen danken wir für die finanzielle Unterstützung dieser Arbeit.

Beschreibung der Versuche

Ausgangsverbindungen: Die stellungs- und konfigurationsisomeren *n-Octene* wurden durch stufenweise Alkylierung von *Acetylen* in flüss. Ammoniak und anschließende partielle stereo-spezifische Hydrierung hergestellt ^{18, 19}.

Die trans-Hydrierung^{19, 20)} erfolgte mit Natrium in flüss. Ammoniak, die cis-Hydrierung²¹⁾ durch Umsetzung mit $HAl(i-C_4H_9)_2$ und nachfolgende Hydrolyse. Die erhaltenen transn-Octene waren gaschromatographisch rein. Der Reinheitsgrad der cis-Isomeren betrug nach GC für cis-n-Octen-(4) 95.2%, für cis-n-Octen-(3) 97.5% und für cis-n-Octen-(2) 99%.

Die aluminiuunorganischen Verbindungen der Firma Schering AG, Bergkamen/Westf., wurden mit Ausnahme des Trioctylaluminiums i. Vak. destilliert. Die als Komplexbildner verwendeten Äther und Amine sowie das Di-n-butylsulfid wurden vorher getrocknet und destilliert.

Versuchsbeschreibung: Alle Versuche wurden in Pyrex-Röhrchen (Länge 220 mm, \emptyset 14 mm) bei einer konstanten Temperatur von 22° und unter Argonatmosphäre ausgeführt. In den mit Argon gespülten Röhrchen wurden Olefin und aluminiumorganische Verbindung homogen

¹⁵⁾ E. Bonitz, Chem. Ber. 88, 742 (1955).

¹⁶⁾ W. P. Neumann, Habilitationsschrift, Univ. Gießen 1959.

¹⁷⁾ K. Ziegler in "Organometallic Chemistry", herausgegeben von H. Zeiss, S. 211, Reinhold Publishing Corp., New York 1960.

¹⁸⁾ Vgl. die Zusammenfassung von T. C. Jacobs, Org. Reactions 5, 49 (1949), John Wiley & Sons, Inc., New York 1949.

¹⁹⁾ F. Asinger, B. Fell und G. Steffan, Chem. Ber. 97, 1555 (1964).

²⁰⁾ K. N. Cambell und L. T. Eby, J. Amer. chem. Soc. 63, 216 (1941).

²¹⁾ G. Wilke und H. Müller, Chem. Ber. 89, 444 (1956).

durchmischt; bei den Versuchen mit Komplexbildnern wurde zunächst das Addukt aus *Aluminiumalkyl* und *Donor* durch Vereinigung beider hergestellt und nach Abkühlen auf Raumtemperatur dann mit dem *Olefin* vermischt. Nach Verschluß durch einen Argonballon wurden die Proben den γ -Strahlen eines ca. 2400 Curie starken ⁶⁰Co-Präparates ausgesetzt. Die Proben waren kreisförmig um die γ -Strahlenquelle angeordnet und wiesen bei allen Versuchen den gleichen Abstand von dem ⁶⁰Co-Präparat auf. Nach Beendigung des Versuchs wurde die Reaktionsmischung durch Eintropfen in 150 ccm $0-5^{\circ}$ kaltes Methanol (doppelwandiger Kolben mit Rückflußkühler und Rührer) bei anschließender Zugabe von 50 ccm 10proz. Salzsäure und 200 ccm Wasser hydrolysiert. Die organische Schicht, die bei einigen Versuchen zur besseren Phasentrennung um 3 ccm GC-reines n-Heptan vermehrt wurde, wurde gaschromatographisch analysiert.

Analytik: Das Gaschromatographie-Gerät (Research Specialities, Detektor: FID) enthielt eine 18 m Säule (Innen- \emptyset 4.75 mm), gefüllt mit β . β' -Oxydipropionitril mit 18.5% AgBF₄, 25 proz. auf Chromosorb R 60-80 mesh. Helium diente als Trägergas. Die Temperatur der Säule betrug 62°, die des Verdampfers 150°. Die Retentionszeiten betrugen für n-Octan 38, für *trans*-n-Octen-(4) 57, für *trans*-n-Octen-(3) 60, für *trans*-n-Octen-(2) 66, für n-Octen-(1) 69, für *cis*-n-Octen-(4) 71, für *cis*-n-Octen-(3) 75 und für *cis*-n-Octen-(2) 82 Min. Die Auswertung der Gaschromatogramme erfolgte mit Hilfe eines Disc-Integrators.

Dosimetrie: Die absorbierte γ -Strahlendosis wurde nach Fricke²²⁾ durch photometrische Bestimmung der auf Grund der γ -Strahlung zu Eisen(III)-Ionen oxydierten Eisenionen einer genau eingestellten (NH₄)₂Fe(SO₄)₂-Lösung ermittelt.

[371/71]

²²⁾ ASTM Standards, Part 9, 487 (1961).